СОР № 1 Геометрия 8 класс Многоугольники. Исследование четырехугольников
НазадМногоугольники. Исследование четырехугольников
Задание:
Углы, образованные при пересечении диагоналей прямоугольника, относятся 2:7. Найдите углы, которые образует диагональ со сторонами данного прямоугольника.
Решение:
Пусть дан АВСД — прямоугольник,
О — точка пересечения диагоналей АС и ВД
уг АОВ : уг ВОС = 2:7
Найти: уг ВАО и уг САД -?
Решение:
1) 2+7=9 частей в смежных углах АОВ и ВОС, ⇒ 180:9=20* в одной части, ⇒ уг АОВ=40*, уг ВОС=140* (по свойству смежных углов)
2) тр АОВ — р/б, т.к. ВО=АО по свойству прямоугольника (диагонали прямоуг равны и точкой пересечения делятся пополам), ⇒ уг АВО = уг ВАО ( по св-ву углов в р/б тр) уг АВО = уг ВАО = (180-40):2=70*
3) уг ВАД = 90*, так АВСД — прямоугольник по условию, ⇒уг САД (он же ОАД) = 90-уг ВАО = 90-70 = 20*
Ответ: 70* и 20*