СОР № 1 Математика 6 класс Переменная. Выражение с переменной Раскрытие скобок. Коэффициент. Подобные слагаемые. Приведение подобных слагаемых Тождественные преобразования выражений. Тождество Преобразования алгебраических выражений Решение текстовых задач

Назад
Математика - 6 класс, Русский 🇷🇺 2 четверть

Переменная. Выражение с переменной Раскрытие скобок. Коэффициент. Подобные слагаемые. Приведение подобных слагаемых Тождественные преобразования выражений. Тождество Преобразования алгебраических выражений Решение текстовых задач

Задание:

Расстояние между двумя пристанями теплоход проходит по течению реки за 3 ч, а против течения — за 3,5 ч. Собственная скорость теплохода v км/ч, а скорость течения реки х км/ч. Составьте выражение по условию задачи для нахождения:
а) скорости теплохода по течению и против течения реки;
b) расстояния, пройденного теплоходом по течению реки;
c) расстояния, пройденного теплоходом против течения реки;
d) общего расстояния, пройденного теплоходом по течению реки и против течения реки;
е) используя выражение из пункта (d), найдите его значение при v = 30 км/ч и х = 6 км/ч.

Решение:

Собственная скорость теплохода v км/ч,
а скорость течения реки x км/ч, тогда
(v+x) км/ч — скорость теплохода по течению
(v-x) км/ч — скорость теплохода против течения
Расстояние по течению 3(v+x) км
равно
расстоянию против течения
3,5(v-x)
Составляем уравнение
3(v+x)=3,5(v-x)
3v+3x=3,5v-3,5x
0,5v=6,5x
v=13x

Скорость по течению  (v+x)=(13x+x)=14x км в час
Скорость против течения (v-x)=(13x-x)=12x  км в час